We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gene Editing Restores Vision in Mouse RP Models

By LabMedica International staff writers
Posted on 04 May 2017
Print article
Image: A confocal micrograph of mouse retina depicting optic fiber layer (Photo courtesy of the National Center for Microscopy and Imaging Research, University of California, San Diego).
Image: A confocal micrograph of mouse retina depicting optic fiber layer (Photo courtesy of the National Center for Microscopy and Imaging Research, University of California, San Diego).
The CRISPR/Cas9 gene-editing tool was used to reprogram defective optical rod photoreceptor cells and transform them into functioning cone photoreceptors, which restored impaired vision in two mouse models of retinitis pigmentosa.

Retinitis pigmentosa (RP) is one of the most common forms of inherited retinal degeneration. This disorder is characterized by the progressive loss of photoreceptor cells and may eventually lead to blindness. Mutations in a number of different genes have been found to cause the retinitis pigmentosa phenotype.

Investigators at the University of California, San Diego applied the CRISPR/Cas9 approach to the RP problem. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

The investigators reported in the April 21, 2017, online edition of the journal Cell Research that they had used adeno-associated virus (AAV) to deliver CRISPR/Cas9 to retinal cells. The effect of the gene-editing tool was to deactivate a master switch gene in the retina called Nrl (Neural retina-specific leucine zipper protein) and a downstream transcription factor called Nr2e3 (photoreceptor cell-specific nuclear receptor). Inactivation of these two proteins reprogrammed rod cells into cone-like photoreceptors, which rescued retinal rod and cone degeneration and restored visual function in two different mouse RP models.

"Cone cells are less vulnerable to the genetic mutations that cause RP," said senior author Dr. Kang Zhang, professor of ophthalmology at the University of California, San Diego. "Our strategy was to use gene therapy to make the underlying mutations irrelevant, resulting in the preservation of tissue and vision. Human clinical trials could be planned soon after completion of preclinical study. There is no treatment for RP so the need is great and pressing. In addition, our approach of reprogramming mutation-sensitive cells to mutation-resistant cells may have broader application to other human diseases, including cancer."

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Lab Sample Rotator
H5600 Revolver
New
Human Insulin CLIA
Human Insulin CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.