We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Loss of p53 Promotes Survival of Cancer Stem Cells

By LabMedica International staff writers
Posted on 26 Oct 2017
Print article
Image: If mitophagy or Pac Man eats all the cell\'s mitochondria, then the \"seeds of cancer\" (stem cells) will be able to grow unhindered and develop more malignant tumors (Photo courtesy of the University of Southern California, Keck School of Medicine / Linya Wang).
Image: If mitophagy or Pac Man eats all the cell\'s mitochondria, then the \"seeds of cancer\" (stem cells) will be able to grow unhindered and develop more malignant tumors (Photo courtesy of the University of Southern California, Keck School of Medicine / Linya Wang).
Cancer researchers have found that the cellular cleansing process known as mitophagy is linked to the development and progression of liver cancer.

Mitophagy is the selective degradation of mitochondria by autophagy. It often occurs to defective mitochondria following damage or stress. In addition to the selective removal of damaged mitochondria, mitophagy is also required to adjust mitochondrial numbers to changing cellular metabolic needs, for steady-state mitochondrial turnover, and during certain cellular developmental stages, such as during cellular differentiation of red blood cells.

Investigators at the University of Southern California (Los Angeles, USA) reported in the October 12, 2017, online edition of the journal Molecular Cell that mitophagy promoted the maintenance of hepatic cancer stem cells (CSCs) through the loss of the tumor suppressor protein p53, which was closely associated with the mitochondria.

When mitophagy was inhibited, the p53 protein on mitochondria was phosphorylated at serine-392 by the enzyme PINK1, a kinase associated with mitophagy. The phosphorylated p53 was then translocated into the nucleus, where it bound to the NANOG promoter. This binding prevented the OCT4 and SOX2 transcription factors from activating the expression of NANOG, a transcription factor critical for maintaining the stem cell properties and the self-renewal ability of CSCs, resulting in the reduction of hepatic CSC populations.

"Liver cancer is difficult to treat, and most patients who are diagnosed with it will die within a five-year period," said senior author Dr. Jing-Hsiung James Ou, professor of molecular microbiology and immunology at the University of Southern California. "My team has identified how liver cancer stem cells are maintained. Without these "seeds of cancer," liver tumors would shrink and eventually disappear. Now that we understand the molecular process, we will be able to target this pathway to stop the production of cancer stem cells. If cancer stem cells are gone, cancer is gone."

Related Links:
University of Southern California

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Newborn Screening Test
NeoMass AAAC 3.0
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.