We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Speedy Cell Cycle Slows Stem Cell Differentiation

By LabMedica International staff writers
Posted on 28 Dec 2017
Print article
Image: A photomicrograph showing stem cells (red) and differentiating cells (green) (Photo courtesy of Cook Laboratory, University of North Carolina).
Image: A photomicrograph showing stem cells (red) and differentiating cells (green) (Photo courtesy of Cook Laboratory, University of North Carolina).
A team of cell biologists has found that the ability of pluripotent stem cells to remain in an undifferentiated state is linked to the length of time the cell spends in the G1 phase of cell division.

All dividing cells must first unwind their DNA so that it can be copied. To achieve this, cells load DNA-unwinding enzymes called helicases onto their DNA during the part of the cell cycle known as G1 phase. Cells must load enough helicase enzymes to ensure that their DNA is copied completely and in time. Stem cells divide faster than their specialized descendants, and have a much shorter G1 phase, as well. Yet these cells still manage to load enough helicases to copy their DNA. Little is known about how the amount, rate, and timing of helicase loading vary between cells that divide at different speeds.

Complete and robust human genome duplication requires loading minichromosome maintenance (MCM) helicase complexes at many DNA replication origins, an essential process termed origin licensing. Licensing is restricted to G1 phase of the cell cycle, but G1 length varies widely among cell types. Investigators at the University of North Carolina (Chapel Hill, USA) utilized single-cell flow cytometry to measure MCM loading rates in asynchronous populations of pluripotent and differentiated cells.

Results published in the November 17, 2017, online edition of the journal eLife revealed that pluripotent stem cells with naturally short G1 phases loaded MCM much faster than their isogenic differentiated counterparts with long G1 phases. During the earliest stages of differentiation toward all lineages, MCM loading slowed concurrently with G1 lengthening, revealing developmental control of MCM loading. Rapid licensing in stem cells was caused by accumulation of the MCM loading protein, Cdt1 (DNA replication factor Cdt1). Prematurely slowing MCM loading in pluripotent cells not only lengthened G1 but also accelerated differentiation. Thus, rapid origin licensing was an intrinsic characteristic of stem cells that contributed to pluripotency maintenance.

"Studies like this help explain the underlying biology of rapidly dividing cells and may inform the development of future therapies, for example stem cell therapies or cancer treatments," said study senior author Dr. Jean Cook, professor of biochemistry and biophysics at the University of North Carolina. "We suspect that rapid MCM loading is an important aspect of how cancer cells manage to grow fast without excessively damaging their DNA. It is a target worth pursuing."

Related Links:
University of North Carolina

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Vitamin B12 Test
CHORUS CLIA VIT B12

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.