We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Coating Increases Clinical Utility of Cardiac Stem Cells

By LabMedica International staff writers
Posted on 22 Jan 2018
Print article
Image: Cardiac stem cells (magenta) decorated with platelet vesicles (brown) (Photo courtesy of North Carolina State University).
Image: Cardiac stem cells (magenta) decorated with platelet vesicles (brown) (Photo courtesy of North Carolina State University).
The effectiveness of cardiac stem cells for repairing heart disease damage is dramatically increased when the cells are covered with a coating of platelet adhesion molecules.

Stem cell transplantation, as used clinically, suffers from low retention and engraftment of the transplanted cells. Inspired by the ability of platelets to recruit stem cells to sites of injury on blood vessels, investigators at North Carolina State University (Raleigh, USA) hypothesized that platelets might enhance the vascular delivery of cardiac stem cells (CSCs) to sites of myocardial infarction injury.

To test this hypothesis, the investigators generated cardiac stem cells and then covered their surface membranes with nanovesicles prepared from platelet adhesion glycoprotein molecules.

The investigators reported in the January 10, 2018, online edition of the journal Nature Biomedical Engineering that CSCs with platelet nanovesicles fused onto their surface membranes expressed platelet surface markers that were associated with platelet adhesion to injury sites. The modified CSCs selectively bound collagen-coated surfaces and endothelium-denuded rat aortas, and in rat and pig models of acute myocardial infarction the modified CSCs increased retention in the heart and reduced infarct size.

“Platelets can home in on an injury site and stay there, and even in some cases recruit a body’s own naturally occurring stem cells to the site, but they are a double-edged sword,” said senior author Dr. Ke Cheng, associate professor of veterinary medicine at North Carolina State University. “That is because once the platelets arrive at the site of injury, they trigger the coagulation processes that cause clotting. In a heart-attack injury, blood clots are the last thing that you want.”

“The nanovesicle is like the platelet’s coat,” said Dr. Cheng. “There is not any internal cellular machinery that could activate clotting. When you place the nanovesicle on the stem cell, it is like giving the stem cell a tiny GPS that helps it locate the injury so it can do its repair work without any of the side effects associated with live platelets. Platelet nanovesicles do not affect the performance of the cardiac stem cells, and are free from any negative side effects. Hopefully we will be able to use this approach to improve cardiac stem cell therapy in clinical trials in the future.”

Related Links:
North Carolina State University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.