We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Modified Adenovirus Vector Used for Cancer Gene Therapy

By LabMedica International staff writers
Posted on 15 Feb 2018
Print article
Image: An adenovirus without and with a novel protein shield. The adenovirus (left) was camouflaged from the immune system by the protective coat (right) (Photo courtesy of the University of Zurich).
Image: An adenovirus without and with a novel protein shield. The adenovirus (left) was camouflaged from the immune system by the protective coat (right) (Photo courtesy of the University of Zurich).
A team of medical virologists has modified the commonly used adenovirus vector to both avoid clearance by the immune system and liver and to specifically target and invade tumor cells.

The clinical application of most systemic viral gene therapies has been limited by the efficient neutralization of the viruses by the immune system and their rapid elimination by the liver. Furthermore, adenovirus has been of little use in the realm of cancer therapy, as this virus does not normally invade tumor cells.

Investigators at the University of Zurich (Switzerland) developed a "work-around" to empower an adenovirus vector for use as a carrier for cancer gene therapy. They engineered a high-affinity protein coat that shielded the most commonly used vector in clinical gene therapy, human adenovirus type 5. Using electron microscopy and crystallography they demonstrated a massive coverage of the virion surface through the hexon-shielding scFv fragment, which was trimerized to exploit the hexon symmetry and gain avidity. In addition, the shield reduced virion clearance in the liver.

When the shielded particles were equipped with adaptor proteins, the virions delivered their payload genes into human cancer cells expressing the HER2 or EGFR surface proteins.

The investigators further reported in the January 31, 2018, online edition of the journal Nature Communications that the combination of shield and adapter also increased viral gene delivery to xenografted tumors in vivo, reduced liver off-targeting, and minimized immune neutralization.

"With this gene shuttle, we have opened up many avenues to treat aggressive cancers in the future, since we can make the body itself produce a whole cocktail of therapeutics directly in the tumor," said senior author Dr. Andreas Plueckthun, professor of biochemistry at the University of Zurich.

Related Links:
University of Zurich

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.