We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Reducing Beta-secretase Reverses Alzheimer's Disease in Model

By LabMedica International staff writers
Posted on 01 Mar 2018
Print article
Image: The brain of a 10-month-old mouse with Alzheimer\'s disease (left) is full of amyloid plaques (red) surrounded by activated microglial cells (green). But these hallmarks of Alzheimer\'s disease are reversed in animals that have gradually lost the BACE1 enzyme (right) (Photo courtesy of The Cleveland Clinic and Rockefeller University Press).
Image: The brain of a 10-month-old mouse with Alzheimer\'s disease (left) is full of amyloid plaques (red) surrounded by activated microglial cells (green). But these hallmarks of Alzheimer\'s disease are reversed in animals that have gradually lost the BACE1 enzyme (right) (Photo courtesy of The Cleveland Clinic and Rockefeller University Press).
Employing a complex series of mouse models, a team of neurological disease researchers showed that reducing the level of the enzyme beta-secretase (BACE1) could reverse the clinical symptoms of Alzheimer's disease (AD).

An important factor in the disease process in AD is the accumulation of amyloid beta (Abeta) protein. To form Abeta, amyloid precursor protein (APP) must be cut by two enzymes, beta-secretase and gamma-secretase. Drugs to block the beta-secretase enzyme (BACE inhibitors) in theory would prevent the buildup of beta-amyloid and may help slow or stop Alzheimer's disease. However, results from studies on BACE inhibitors have raised the possibility that the drugs currently being investigated for the treatment of Alzheimer's may have significant side effects related to impaired motor coordination.

Since mice that completely lack BACE1 suffer severe neurodevelopmental defects, investigators at the Cleveland Clinic (OH, USA) examined the possibility that inhibiting BACE1 in adult animals might be less harmful. To this end, they generated a strain of mice that gradually lost this enzyme as they grew older.

The investigators crossed these mice with a strain that started to develop amyloid plaques and Alzheimer's disease when they were about 75 days old. They reported in the February 14, 2018, online edition of the Journal of Experimental Medicine that the resulting offspring also formed plaques at this age, even though their BACE1 levels were approximately 50% lower than normal. However, the plaques began to disappear as the mice aged and lost BACE1 activity, until, at 10 months of age, the mice had no plaques in their brains at all.

This reversal in amyloid deposition caused significant improvement in gliosis and neuritic dystrophy. Moreover, synaptic functions, as determined by long-term potentiation and contextual fear conditioning experiments, were significantly improved, correlating with the reversal of amyloid plaques.

"To our knowledge, this is the first observation of such a dramatic reversal of amyloid deposition in any study of Alzheimer's disease mouse models," said senior author Dr. Riqiang Yan, now professor of neuroscience at the University of Connecticut (Storrs, USA). "Our study provides genetic evidence that preformed amyloid deposition can be completely reversed after sequential and increased deletion of BACE1 in the adult. Our data show that BACE1 inhibitors have the potential to treat Alzheimer's disease patients without unwanted toxicity. Future studies should develop strategies to minimize the synaptic impairments arising from significant inhibition of BACE1 to achieve maximal and optimal benefits for Alzheimer's patients."

Related Links:
Cleveland Clinic
University of Connecticut

New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay
New
Hepatitis B Virus Test
HBs Ab – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.