We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Link Between Gut Flora and MS Discovered

By LabMedica International staff writers
Posted on 22 Oct 2018
Print article
Image: Diminishing myelin sheaths: The damaged areas (at the bottom of the image) of the brains of MS patients lack myelin (at the top, in blue) (Photo courtesy of Dr. med. Imke Metz, University of Göttingen).
Image: Diminishing myelin sheaths: The damaged areas (at the bottom of the image) of the brains of MS patients lack myelin (at the top, in blue) (Photo courtesy of Dr. med. Imke Metz, University of Göttingen).
Multiple sclerosis (MS) is an immune-mediated autoimmune disease of the central nervous system that develops in genetically susceptible individuals and likely requires environmental triggers. In MS the body's own immune system attacks and damages the protective coating around nerve cells.

The autoantigens and molecular mimics triggering the autoimmune response in multiple sclerosis remain incompletely understood. Although it is well established that autoreactive lymphocytes induce demyelination in multiple sclerosis, the exact antigenic targets that initiate disease are undefined.

An international team of scientists led by the University Hospital Zurich (Zurich, Switzerland) used a brain-infiltrating CD4+ T cell clone that is clonally expanded in multiple sclerosis brain lesions and a systematic approach for the identification of its target antigens, positional scanning peptide libraries in combination with biometrical analysis. For the genetically defined subgroup of MS patients examined by the scientists, results show that gut microbiota could play a far greater role in the pathogenesis of the disease than previously assumed.

The team identified guanosine diphosphate (GDP)–l-fucose synthase as an autoantigen that is recognized by cerebrospinal fluid–infiltrating CD4+ T cells from HLA-DRB3*–positive patients. Significant associations were found between reactivity to GDP-l-fucose synthase peptides and DRB3*02:02 expression, along with reactivity against an immunodominant myelin basic protein peptide. These results, coupled with the cross-recognition of homologous peptides from gut microbiota, suggest a possible role of this antigen as an inducer or driver of pathogenic autoimmune responses in multiple sclerosis.

The clinical approach of the group involves drawing blood from MS patients in a clinical trial and then attaching the immunoactive protein fragments onto the surface of red blood cells in a laboratory. When the blood is reintroduced into the bloodstream of patients, the fragments help to "re-educate" their immune system and make it "tolerate" its own brain tissue. This therapeutic approach aims for effective targeted treatment without severe side effects.

Mireia Sospedra Ramos, MD, the senior author of the study, said, “Our clinical approach specifically targets the pathological autoreactive immune cells. This approach therefore differs radically from other treatments that are currently available, which throttle the whole immune system. While these treatments often succeed in stopping the progression of the disease, they also weaken the immune system and can thus cause severe side effects.” The study was published on October 10, 2018, in the journal Science Translational Medicine.

Related Links:
University Hospital Zurich

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.