We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Link Between Gut Flora and MS Discovered

By LabMedica International staff writers
Posted on 22 Oct 2018
Print article
Image: Diminishing myelin sheaths: The damaged areas (at the bottom of the image) of the brains of MS patients lack myelin (at the top, in blue) (Photo courtesy of Dr. med. Imke Metz, University of Göttingen).
Image: Diminishing myelin sheaths: The damaged areas (at the bottom of the image) of the brains of MS patients lack myelin (at the top, in blue) (Photo courtesy of Dr. med. Imke Metz, University of Göttingen).
Multiple sclerosis (MS) is an immune-mediated autoimmune disease of the central nervous system that develops in genetically susceptible individuals and likely requires environmental triggers. In MS the body's own immune system attacks and damages the protective coating around nerve cells.

The autoantigens and molecular mimics triggering the autoimmune response in multiple sclerosis remain incompletely understood. Although it is well established that autoreactive lymphocytes induce demyelination in multiple sclerosis, the exact antigenic targets that initiate disease are undefined.

An international team of scientists led by the University Hospital Zurich (Zurich, Switzerland) used a brain-infiltrating CD4+ T cell clone that is clonally expanded in multiple sclerosis brain lesions and a systematic approach for the identification of its target antigens, positional scanning peptide libraries in combination with biometrical analysis. For the genetically defined subgroup of MS patients examined by the scientists, results show that gut microbiota could play a far greater role in the pathogenesis of the disease than previously assumed.

The team identified guanosine diphosphate (GDP)–l-fucose synthase as an autoantigen that is recognized by cerebrospinal fluid–infiltrating CD4+ T cells from HLA-DRB3*–positive patients. Significant associations were found between reactivity to GDP-l-fucose synthase peptides and DRB3*02:02 expression, along with reactivity against an immunodominant myelin basic protein peptide. These results, coupled with the cross-recognition of homologous peptides from gut microbiota, suggest a possible role of this antigen as an inducer or driver of pathogenic autoimmune responses in multiple sclerosis.

The clinical approach of the group involves drawing blood from MS patients in a clinical trial and then attaching the immunoactive protein fragments onto the surface of red blood cells in a laboratory. When the blood is reintroduced into the bloodstream of patients, the fragments help to "re-educate" their immune system and make it "tolerate" its own brain tissue. This therapeutic approach aims for effective targeted treatment without severe side effects.

Mireia Sospedra Ramos, MD, the senior author of the study, said, “Our clinical approach specifically targets the pathological autoreactive immune cells. This approach therefore differs radically from other treatments that are currently available, which throttle the whole immune system. While these treatments often succeed in stopping the progression of the disease, they also weaken the immune system and can thus cause severe side effects.” The study was published on October 10, 2018, in the journal Science Translational Medicine.

Related Links:
University Hospital Zurich

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Lab Sample Rotator
H5600 Revolver
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.