We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Paper-Based Microneedle Skin Patch for Continuous Glucose Monitoring

By LabMedica International staff writers
Posted on 23 Sep 2020
Print article
Image: Illustration demonstrating painless and biodegradable microneedles on a paper patch (Photo courtesy of University of Tokyo)
Image: Illustration demonstrating painless and biodegradable microneedles on a paper patch (Photo courtesy of University of Tokyo)
A microneedle skin patch for the continuous monitoring of an individual’s glucose level was designed to be a painless and disposable screening and diagnostic test for diabetes patients, as well as those with pre-diabetes.

Porous microneedles are expected to have a variety of potential applications in diagnostics owing to their ability to penetrate human skin painlessly and extract bio‐fluid by capillary action. Investigators at the University of Tokyo (Japan) have applied this technology for screening and monitoring levels of glucose.

The microneedles were fabricated by pouring a mixture of a melted biodegradable polymer and salt into the cone-shaped cavities of a micro-mold while applying heat. The mold was then inverted with the needles on the lower side, and the device was placed on top of a sheet of paper with high pressure applied from above. The high pressure forced the polymer mixture into the pores of the paper, securing the attachment and allowing fluid drawn through the needles to pass effortlessly into the paper. After removal from the mold, the needles were cooled in a solution that removed the salt, leaving behind pores, through which fluid could flow into the paper. A paper glucose sensor was then attached to the paper base of the needle array. The final product was disposable and biodegradable, and its use did not require any medical expertise or training.

The paper‐based glucose sensor was used to demonstrate the absorption property of the microneedles, and showed successful sample extraction and glucose concentration analysis from agarose gel‐based skin mimics. The investigators maintained that the platform had the potential to integrate various different paper‐based bio‐sensors in order to function as painless and disposable rapid screening and diagnostic tests for many metabolites.

"We have overcome this problem by developing a way to combine porous microneedles with paper-based sensors," said senior author Dr. Beomjoon Kim, professor in the institute of industrial science at the University of Tokyo. "The result is low-cost, disposable, and does not require any additional instruments."

The microneedle device was described in the August 2020 issue of the journal Medical Devices & Sensors.


Related Links:
University of Tokyo

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Static Concentrator
BJP 10
New
UHF RFID Tag and Inlay
AD-321r6/AD-321r6-P

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.