We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Breakthrough in Protein Variant Detection Using Nanopore Technology to Advance POC Diagnostics

By LabMedica International staff writers
Posted on 03 Aug 2023
Print article
Image: Nanopore technology has achieved a breakthrough in protein variant detection (Photo courtesy of Oxford Nanopore Technologies)
Image: Nanopore technology has achieved a breakthrough in protein variant detection (Photo courtesy of Oxford Nanopore Technologies)

Human cells hold around 20,000 protein-encoding genes, although the actual number of proteins present in cells far exceeds this figure, with over a million distinct structures known to exist. These variants occur through a procedure known as post-translational modification (PTM), which happens after a protein has been transcribed from DNA. PTM creates structural changes such as adding chemical groups or carbohydrate chains to the individual amino acids that comprise the proteins. As a result, the same protein chain can have hundreds of possible variations. These variants play essential roles in biology, regulating complex biological processes within individual cells. Understanding the variation could greatly enhance our knowledge of cellular functions. However, producing a comprehensive inventory of proteins has so far remained unachievable.

A team of scientists led by the University of Oxford (Oxford, UK) has made a significant breakthrough in identifying variations in protein structures. Their method utilizes cutting-edge nanopore technology to detect structural variations at the single-molecule level, even deep within long protein chains. The researchers successfully devised the protein analysis technique based on nanopore DNA/RNA sequencing technology. In this approach, a directional flow of water captures and unfolds 3D proteins into linear chains that are fed through tiny pores that only permit one amino acid molecule to pass at a time. Structural variations are recognized by measuring fluctuations in an electrical current applied across the nanopore. Each molecule disrupts the current differently, giving them a unique signature.

The team successfully demonstrated the efficacy of this method in detecting three different PTM modifications (phosphorylation, glutathionylation, and glycosylation) at the single-molecule level in protein chains exceeding 1,200 residues. These included modifications deeply embedded within the protein sequence. What is particularly noteworthy is that the method operates without the need for labels, enzymes, or additional reagents. This novel protein characterization technique can be easily integrated into currently available portable nanopore sequencing devices, allowing for the rapid development of protein inventories of single cells and tissues. This could expedite point-of-care diagnostics and facilitate the personalized detection of specific protein variants related to diseases such as cancer and neurodegenerative disorders.

“This simple yet powerful method opens up numerous possibilities. Initially, it allows for the examination of individual proteins, such as those involved in specific diseases,” said Professor Yujia Qing from the Department of Chemistry at the University of Oxford. “In the longer term, the method holds the potential to create extended inventories of protein variants within cells, unlocking deeper insights into cellular processes and disease mechanisms.”

“The ability to pinpoint and identify post-translational modifications and other protein variations at the single-molecule level holds immense promise for advancing our understanding of cellular functions and molecular interactions,” added Professor Hagan Bayley from the Department of Chemistry at the University of Oxford. “It may also open new avenues for personalized medicine, diagnostics, and therapeutic interventions.”

Related Links:
University of Oxford

Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO
New
Serum Toxicology Benzodiazepine Assay
DRI Serum Toxicology Benzodiazepine Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.