We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




New Assay Advances Personalized Therapy for Cancer Patients

By LabMedica International staff writers
Posted on 24 Feb 2017
Print article
Image: The Ion personal genome machine (Photo courtesy of Thermo Fisher Scientific).
Image: The Ion personal genome machine (Photo courtesy of Thermo Fisher Scientific).
Precision medicine attempts to direct treatment for a patient based on molecular alterations known to exist in the patient's disease and the treatment of patients with cancer has been at the center of the evolution for precision medicine studies.

This effort addresses therapeutic efficacy across multiple tissues, but also adds data as to the clinical value of broad-based screening panels versus disease-specific assays. A novel assay tailored for these trials is highly sensitive for detecting genetic mutations from a variety of tumor tissue and, for the first time, has been reproduced with accuracy by multiple clinical laboratories, laying the groundwork for future clinical utility.

A multidisciplinary team of scientists led by those at the Frederick National Laboratory for Cancer Research tested 186 samples and 12 cell lines at four different laboratories. Steps were taken to maximize standardization, including development of standard operating procedures, use of the same commercial assay and instruments, and face-to-face discussions. The National Cancer Institute's NCI-MATCH (Molecular Analysis for Therapy Choice) is a large, ongoing clinical trial that matches tumors to therapies based on the tumor's genetic characteristics.

The next generation sequencing (NGS) technology used in the trial was the Oncomine Cancer Panel assay and the Ion Personal Genome Machine is able to detect more than 4,000 pre-defined genomic variations across 143 genes, including single nucleotide variants (SNVs), insertions/deletions (indels), copy number variations (CNVs), and gene fusions. Levels of evidence were developed to select a subset of specific actionable genomic variants to be used for treatment matching.

The investigators report that the assay was highly sensitive, 96.98% for 265 known mutations, with 99.99% specificity. Since one feature of the NCI-MATCH trial is the wide variety of tumors examined, including solid tumors and lymphomas that no longer respond to standard therapy, the assay used must be able to analyze specimens from different tissues. Importantly, the NCI-MATCH NGS assay was able to accurately determine genetic abnormalities in biopsies from the pancreas, melanoma, bone, and skin.

Elizabeth R. Unger, PhD, MD, from the Centers for Disease Control and Prevention said, “The validation study reported is another step moving the field closer to the time when precision medicine will generate the expected benefits in improved clinical outcomes. Although the success of the NCI-MATCH trial cannot be assured, linking precision laboratories to precision medicine trials assures that data used for drug assignment will be reliable. Further, the use of a commercial platform and integrated analysis and reporting pipeline will greatly facilitate broader translation of any successes.” The study was published on February 7, 2017, in The Journal of Molecular Diagnostics.

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA
New
Hepatitis B Virus Test
HBs Ab – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.