We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cancer Tissue Handling Needs Freezing Adaption

By LabMedica International staff writers
Posted on 14 Jan 2013
Print article
Traditional specimen handling methods for diagnosing cancer are hampering the introduction of genetic sequencing technology as a routine laboratory procedure.

Tumor tissue obtained through a biopsy is fixed in formalin, and embedded in paraffin for microscopic viewing, but the chemical mixture damages DNA, so sequencing tissue processed in this way can be difficult, if not impossible.

Scientists at the Scripps Translational Science Institute (La Jolla, CA, USA) have suggested that a better alternative is to routinely freeze a portion of the specimen, which retains the tissue's genetic coding while preserving it for future analysis. In order to have enough tissue to freeze, larger or additional biopsy samples may be required, especially when using minimally invasive needle biopsy procedures.

Although complete genetic evaluations of tumors might require higher sample-storage costs and a more invasive biopsy procedure, most patients would likely agree to that option if it translates into a better diagnosis and possible treatment. Evidence of such benefit should come from randomized clinical trials that compare detailed genetic evaluation of tumor tissue with the current standard of care for cancer patients.

Genetically guided cancer therapy is an established procedure for the treatment of malignancies. This is especially true where identifying mutations by genotyping of the human epidermal growth factor receptor 2 gene (HER2) in breast cancer or the proto-oncogene B-Raf gene (BRAF) in melanoma, may alter the chemotherapeutic regime. The level of crucial detail is only possible with whole genome and exome sequencing from frozen tissue.

Eric J. Topol, MD, a cardiologist and one of the authors, said, “Deciding how best to obtain tumor samples and how best to process them for whole genome or exome sequencing is a pivotal yet unresolved issue with several layers of complexity. We need to completely rethink the way we have collected and stored cancer tissue samples for decades. It’s becoming increasingly clear that obtaining an accurate map of a tumor's DNA can be the key to determining the specific mutations that are driving a person's cancer, how best to treat it and how likely it is to recur." The article was published on January 2, 2013, in the Journal of the American Medical Association (JAMA).

Related Links:

Scripps Translational Science Institute



Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Vitamin B12 Test
CHORUS CLIA VIT B12
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.