We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microfluidic Chip Captures Live Tumor Cells from Blood

By LabMedica International staff writers
Posted on 28 Aug 2013
Print article
Image: Microfluidic chip capturing cancer cells (Photo courtesy of Peking University).
Image: Microfluidic chip capturing cancer cells (Photo courtesy of Peking University).
A neoteric microfluidic chip has been developed that can quickly and efficiently segregate and capture live circulating tumor cells (CTCs) from a patient's blood.

The chip has potential applications for cancer screenings and treatment assessments as CTCs circulating within a patient's bloodstream can carry cancer from a primary tumor site to distant sites of the body, spreading the disease.

A team of scientists at Peking University (Beijing, China) developed the system that captures more than 90% of the CTCs, which makes it highly efficient. Overall processing time has also been shortened, due in part to a step in which red blood cells are selectively lysed, or broken apart. Lysing the red blood cells diminishes the tendency of blood to clog the system, a common problem that slows processing time in similar CTC filtering devices.

The microfluidic system consists of the chip itself, tubing, fluid connectors, syringes, and syringe pumps. Tubes and fluid connectors are used to connect the syringes, and fluidic ports punched into the microfluidic chip. The ability to count live, individual CTCs in the bloodstream can help doctors determine the severity of a cancer, since CTC density in the blood is linked to the progression of the disease and patients' likelihood of survival. The novel method could also improve "liquid biopsy" techniques, in which a small amount of blood is drawn as an alternative to conventional tissue biopsies of primary or metastatic tumors.

Ray P.S. Han, PhD, a professor and lead author, said, “Because our chip is able to capture viable CTCs, it creates opportunities for the development of new and efficient cancer biomarkers. It also gives us a chance of the grandest dream of all: a technology capable of directly removing CTCs from the human bloodstream, a form of CTC dialysis." The study was published online on June 6, 2013, in the journal Biomicrofluidics.

Related Links:
Peking University


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Centrifuge
Centrifuge 5430/ 5430 R
New
Lab Sample Rotator
H5600 Revolver

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.