Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Deleting a Gene May Allow Mammalian Limb Regeneration

By LabMedica International staff writers
Posted on 24 Mar 2010
A recent study found that by preventing expression of a single gene it was possible to restore in a mouse model the potential for regeneration of a lost limb.

Mammals generally lack the capability to regenerate multiple tissue types, organs, and appendages after injury although some types of animals including some sponge, hydra, planarian, and salamander species do retain this ability.

The one mammal that has been shown in the laboratory to be capable of regenerating complex tissues it the MRL mouse, which is able to generate tissue to close holes punctured in their ears. More...
Unlike typical mammals, which heal wounds by forming a scar, these mice begin by forming a blastema, a structure associated with rapid cell growth and de-differentiation. At the molecular level, cells from MRL mice lack the p21 gene. Absence of this gene, which is under the direct control of the p53 tumor suppressor, is a characteristic trait of mouse embryonic stem cells.

To investigate further the role of p21, researchers at the Wistar Institute (Philadelphia, PA, USA) genetically engineered a different, unrelated mouse strain to lack p21 expression. They reported in the March 15, 2010, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences (PNAS) that these animals closed ear holes similar to MRL mice, providing a firm link between this gene and tissue regeneration. Wild type mice with active p21 failed to close ear holes.

"In normal cells, p21 acts like a brake to block cell cycle progression in the event of DNA damage, preventing the cells from dividing and potentially becoming cancerous,” said senior author Dr. Ellen Heber-Katz, professor of cellular and molecular oncogenesis at the Wistar Institute. "In these mice without p21, we do see the expected increase in DNA damage, but surprisingly no increase in cancer has been reported. The combined effects of an increase in highly regenerative cells and apoptosis may allow the cells of these organisms to divide rapidly without going out of control and becoming cancerous. In fact, it is similar to what is seen in mammalian embryos, where p21 also happens to be inactive after DNA damage. The down regulation of p21 promotes the induced pluripotent state in mammalian cells, highlighting a correlation between stem cells, tissue regeneration, and the cell cycle.”

"Much like a newt that has lost a limb, these mice will replace missing or damaged tissue with healthy tissue that lacks any sign of scarring," said Dr. Heber-Katz. "While we are just beginning to understand the repercussions of these findings, perhaps, one day we will be able to accelerate healing in humans by temporarily inactivating the p21 gene.”

Related Links:

Wistar Institute




New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.