Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Clues into How Cells Achieve Immortality

By LabMedica International staff writers
Posted on 28 Apr 2010
Swedish investigators can now show that cells that grow forever, becoming immortal, obtain this capacity through gradual changes in the expression of genes that control the repair of DNA damage and regulate growth and cell death. More...
Their research also shows that activation of the enzyme complex telomerase, which is essential for unlimited growth, occurs late in this process.

The study's findings, published in the April 2010 issue of the journal Aging Cell, was performed by a research team from Umeå University (Sweden) and directed by Prof. Göran Roos at the department of medical bioscience, pathology. The study's findings provide more insights into how cells' telomeres are regulated during the process that leads to perpetuating the life of cells.

One type of blood cells, lymphocytes, were analyzed on repeated occasions during their cultivation in an incubator until they achieved the ability to grow an unlimited number of cell divisions, a process that is termed immortalization. In experiments, immortalization can be achieved following genetic manipulation of cells in various ways, but in the lymphocytes under study, this occurred spontaneously. This is an atypical phenomenon that can be compared to the development of leukemia in humans, for example.

The ends of chromosomes, the telomeres, are important for the genetic stability of organisms' cells. In normal cells, telomeres are shortened with every cell division, and at a specific short telomere length, they stop dividing. With the occurrence of genetic mutations, the cells can continue to grow even though their telomeres continue to be shortened. At a critically short telomere length, however, a so-called crisis occurs, with imbalance in the genes and massive cell death. In rare cases, the cells survive this crisis and become immortalized. In earlier research, this transition from crisis to eternal life has been associated with the activation of telomerase, an enzyme complex that can lengthen cells' telomeres and help stabilize the genes. A typical finding is that cancer cells have active telomerase.

The current study demonstrated that cells initially lose telomere length with each cell division, as expected, and after a while enter a crisis stage with massive cell death. Those cells that survive the crisis and become immortalized evince no activation of telomerase; instead, this happens later in the process. The Umeå researchers discovered that the expression of genes inhibiting telomerase is reduced in cells that get through the crisis, but telomerase was not activated until positively regulating factors were activated, thus allowing the telomeres to become stabilized through lengthening. By analyzing the genetic expressions, the scientists were able to show that the cells that survived the crisis stage had mutations in genes that are crucial to the repair of DNA damage and the regulation of growth and cell death. This discovery provides new insights into the series of events that needs to occur for cells to become immortalized, and it will have an impact on future studies of leukemia, for example.

The studies were performed in collaboration with the Center for Oncology and Applied Pharmacology, University of Glasgow (UK) and the Maria Skodowska-Curie Memorial Cancer Center and Institute of Oncology (Warsaw, Poland).

Related Links:
Umeå University


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.