We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Genome Mapping Technology Finds Specific Genes Faster

By LabMedica International staff writers
Posted on 29 Apr 2010
A global team of investigators has designed a specialized mapping technique that could speed research in genomic fields by quickly finding genetic associations that shape an organism's observable characteristics. More...


Using plants from 93 different Arabidopsis thaliana populations, a team led by the Gregor Mendel Institute of Plant Biology (Vienna, Austria) was able to find genetic links among multiple phenotypes, or traits, suggesting that the same genes or closely related genes controlled those traits. Dr. David E. Salt, a Purdue University (West Lafayette, IN, USA), a professor of plant biology and coauthor of the study released March 24, 2010, in the journal Nature, reported that the ability to find these types of genetic associations could speed scientists' ability to find and isolate genes and understand their function. "This may show that multiple phenotypes are being controlled by a specific region of the genome,” Dr. Salt said. "It helps us understand the mechanisms.”

A conventional search for a gene responsible for a particular characteristic requires using plants that have been phenotyped, or identified by characteristics. They are then crossed with others, and the offspring are phenotyped. Scientists then look for similarities in offspring's genes with the desired trait. The process can be painstaking and time-consuming because many thousands of individuals may need to be checked, according to Dr. Salt.

Genome-wide association mapping compares the sequence of DNA in genomes of many individual plants or animals to find similarities that narrow the scope of the search for a particular gene. "We can look for a region in the genome that is in common among the individuals,” Dr. Salt noted. "For plant biologists, it's a much more efficient way of getting to genes. And for animal biologists, where making test crosses is more difficult, this is critical.”

In this study, specific differences in DNA, called single nucleotide polymorphisms (SNPs), were compared at 250,000 sites across the genomes of many individuals. The genomes were matched up against specific traits for each individual in order to find SNPs that are associated with the trait of interest. If scientists were looking for plants that produce high seed yields, for example, they would compare the genomes of plants that have a range of seed yields. The sites where the genomes match in individuals with high seed yields are possible locations of sought-after genes.

Genome-wide association mapping is a faster process because fewer plants--typically in the hundreds--need to be grown and phenotyped. Finding genetic associations among multiple phenotypes could reveal more information about how those characteristics might be connected.

Of the 107 phenotypes used in the research, Dr. Salt was responsible for phenotyping the plants for 18 characteristics, which focused on nutrient and micronutrient content. He reported that the next phase in the research would be to test those associations to determine the genes responsible for particular plant characteristics.

Related Links:
Gregor Mendel Institute of Plant Biology
Purdue University



New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.