We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genomic Signal Processing May Provide Insights into Cancer Treatment

By LabMedica International staff writers
Posted on 22 Dec 2010
Print article
A scientist is applying some of the tools of his specialty to try to prod genetic behavior in ways that may cure disease in the near future.

Dr. Dan Schonfeld, professor of electrical and computer engineering at the University of Illinois at Chicago (IL, USA), and a leading expert in image and video analysis, is studying gene expression and interactions in ways that are analogous to the workings of electrical or computer networks. He is project director and lead investigator of a four-year, US$1.2 million National Institutes of Health (Bethesda, MD, USA) grant.

"The idea is that DNA gives expression to proteins, and the amount and level of proteins dictates the state of the organism,” Dr. Schonfeld said.”If the expression level of one DNA goes up, it might reduce the expression level of another. There is this symbiotic relation between the genes in a network and the expression level of each of the proteins depends on one another.”

Dr. Schonfeld envisions this dynamic behavior leading to production of either good or bad proteins. He envisions that using the tools of mathematics and engineering will lead to a way to control this protein production. To achieve this, he and his colleagues model gene regulatory networks as a Markov chain--a statistical modeling tool frequently used in software development. They monitor the network over time and make slight changes or perturbations that may provide a level of control. "We've actually formed a new subarea of inverse perturbation theory where we say we know where we want to go, what is the smallest change in the network that we need to impose in order to guarantee that wherever we are, we're going to end up where we'd like to be,” he said.

Dr. Schonfeld reported that his objective is to take the results of mathematic analysis, convert them into a protocol for making small changes by putting specific chemicals into the cell resulting in a small change in the network, and then monitor its behavior over time to see whether it generates results predicted from the mathematic analysis.

Their hypothetic model will be tested on melanoma cells using RNA interference and plasmid molecules designed to regulate the expression levels of specific genes in a melanoma network. "We need to perturb and affect the influence of one gene on the other in order to move it in a better direction,” he said. "The successful outcome of the proposed approach to the treatment of malignant melanoma cells could serve as a foundation for development of intervention strategies in other cancer networks.”

Dr. Schonfeld noted that an interdisciplinary approach is "essential to an effective plan for developing novel treatment and clinical decision making in cancer research.”

Related Links:

University of Illinois at Chicago


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Leishmania Test
Leishmania Real Time PCR Kit
New
Chlamydia Test Kit
CHLAMYTOP

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.