We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Incorporating a Biologic Nanopore into a Synthetic One Offers New Ways to Analyze DNA

By LabMedica International staff writers
Posted on 22 Dec 2010
Print article
Researchers reported a new kind of nanopore device that could help in developing fast and inexpensive genetic analysis. The innovative method that combines synthetic and biologic materials to result in a tiny hole on a chip is able to measure and analyze single DNA molecules.

The investigators involved on the project were from Delft University of Technology (The Netherlands) and Oxford University (UK). "The first mapping of the human genome where the content of the human DNA was read off was completed in 2003 and it cost an estimated 3 billion US dollars. Imagine if that cost could drop to a level of a few 100 euro, where everyone could have their own personal genome sequenced. That would allow doctors to diagnose diseases and treat them before any symptoms arise,” Prof. Cees Dekker of the Kavli Institute of Nanoscience at Delft explained.

One promising device is called a nanopore: a minute hole that can be used to ‘read' data from a single molecule of DNA as it threads through the hole. New research by Dr. Dekker's group in collaboration with Prof. Hagan Bayley of Oxford University, has now demonstrated a new, much more robust type of nanopore device. It combines biologic and artificial building blocks.

Dr. Dekker noted, "Nanopores are already used for DNA analysis by inserting naturally occurring, pore-forming proteins into a liquid-like membrane made of lipids. DNA molecules can be pulled individually through the pore by applying an electrical voltage across it, and analyzed. One feature that makes this biologic technology especially difficult, however, is the reliance on the fragile lipid support layer. This new hybrid approach is much more robust and suitable to integrate nanopores into devices.

The new research, performed mainly by lead author Dr. Adam Hall, is a simple technique that involves implanting the pore-forming proteins into a robust layer in a silicon chip. Essentially, an individual protein is attached to a larger piece of DNA, which is then pulled through a premade opening in a silicon nitride membrane.

When the DNA molecule threads through the hole, it pulls the pore-forming protein behind it, ultimately lodging it in the opening and creating a strong, chip-based system that is custom-made for arrays and device applications. The researchers have shown that the hybrid device is fully functional and can be used to detect DNA molecules.

The scientists published their findings in the November 28, 2010, issue of the journal Nature Nanotechnology.

Related Links:

Delft University of Technology
Oxford University



New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Progesterone Serum Assay
Progesterone ELISA Kit
New
Thyroid ELISA Kit
AESKULISA a-TPO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.