We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Long-Sought Anticancer Agent Synthesized

By LabMedica International staff writers
Posted on 15 Feb 2011
Print article
A group of US scientists has synthesized for the first time a chemical compound called lomaiviticin aglycon, leading to the development of a new class of molecules that appear to target and destroy cancer stem cells.

Chemists worldwide have been interested in lomaiviticin's potential anticancer properties since its discovery in 2001. But up to now, they have been unable to obtain enough quantities of the compound, which is produced by a rare marine bacterium that cannot be easily persuaded into creating the molecule. For the past 10 years, different groups around the world have been trying instead to synthesize the natural compound in the lab, but without success.

Now a team from Yale University (New Haven, CT, USA), led by chemist Dr. Seth Herzon, has managed to create lomaiviticin aglycon for the first time, opening up new ways to explore innovative chemotherapies that could target cancer stem cells, believed to be the precursors to tumors in a number of different cancers including ovarian, brain, lung, prostate, and leukemia. Their study's findings were published online February 1, 2011, in the Journal of the American Chemical Society. "About three quarters of anticancer agents are derived from natural products, so there's been lots of work in this area,” Dr. Herzon said. "But this compound is structurally very different from other natural products, which made it extremely difficult to synthesize in the lab.”

In addition to lomaiviticin aglycon, the investigators also created smaller, similar molecules that have been shown to be extremely effective in killing ovarian stem cells, according to Gil Mor, MD, a researcher at the Yale School of Medicine who is collaborating with Dr. Herzon to assess the new class of molecules' potential as a cancer therapeutic.

The scientists are particularly excited about lomaiviticin aglycon's potential to kill ovarian cancer stem cells because the disease is very resistant to Taxol and Carboplatin, two of the most common chemotherapy drugs. "Ovarian cancer has a high rate of recurrence, and after using chemotherapy to fight the tumor the first time, you're left with resistant tumor cells that tend to keep coming back,” Dr. Mor explained. "If you can kill the stem cells before they have the chance to form a tumor, the patient will have a much better chance of survival--and there aren't many potential therapies out there that target cancer stem cells right now.”

Dr. Herzon's team, which managed to synthesize the molecule in just 11 steps starting from basic chemical building blocks, has been working on the problem since 2008 and spent more than one year on just one step of the process involving the creation of a carbon-carbon bond. It was an accomplishment that many researchers thought not possible, but while others tried to work around having to create that bond by using other techniques, the team's persistence paid off. "A lot of blood, sweat, and tears went into creating that bond,” Dr. Herzon said. "After that, the rest of the process was relatively easy.”

Next, the team will continue to study the compound to determine better what is happening to the stem cells at the molecular level. The team hopes to begin testing the compounds in animals shortly. "This is a great example of the synergy between basic chemistry and the applied sciences,” Dr. Herzon said. "Our original goal of synthesizing this natural product has led us into entirely new directions that could have broad impacts in human medicine.”

Related Links:
Yale University



New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Incubator
HettCube 120
New
Laboratory Electric Thermostat
DNP-9025A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.