We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New X-Ray Camera to Shed Light About How Chemistry Works

By LabMedica International staff writers
Posted on 16 Aug 2011
Print article
Designed to record bursts of images at an unprecedented speed of 4.5 million frames per second, an innovative X-ray camera will help a major new research facility provide details on the structure of matter.

The camera is being built with Science and Technology Facilities Council’s (STFC; Swindon, UK) world-class engineering expertise. The unique device will be delivered to the billion-euro European XFEL (X-ray free-electron laser; (Hamburg, Germany) in 2012 and will contribute to drug discovery and other vital research once this facility starts operating in 2015. The go-ahead for continuation of the GBP 3 million prototype collaboration contract for the camera’s construction has been confirmed following a visit to STFC by a delegation from the European XFEL’s Detector Advisory Committee.

The decision to entrust construction of this crucial piece of equipment to STFC recognizes the organization's outstanding capabilities in advanced microelectronics and the design of high-tech imaging devices (e.g., for the large Hadron collider at CERN).

Now under construction near Hamburg in Northern Germany, the European XFEL is a two-mile-long facility that will use superconducting accelerator technology to accelerate electrons that then generate X-ray flashes a billion times brighter than those produced by traditional X-ray sources. Each flash will last less than one hundred million billionth of a second. With the properties of laser light, these short, intense flashes will, for example, make it possible to take three-dimensional X-ray images of single molecules.

Current leading-edge X-ray cameras are designed to capture images when matter is bombarded by a constant beam of X-rays. But the extreme brevity and intensity of the flashes produced by the European XFEL means such cameras will not be suitable for use at the new facility.

STFC’s new device, which is being built in collaboration with the University of Glasgow (Scotland, UK), is specifically designed to work in conjunction with hyper-short, hyper-brilliant X-ray flashes. It will be installed in one of the first experimental endstations incorporated in the European XFEL. The device will help ensure that the European XFEL provides a unique opportunity for science and industry to understand matter and its behavior, mapping the atomic details of viruses, for instance, or pinpointing the molecular composition of individual cells.

Dr. Tim Nicholls of STFC, stated, “We’re delighted that the European XFEL has turned to STFC to build this pioneering camera. It demonstrates how the UK can provide the high-tech excellence that world markets need, leading to scientific advances that make a real difference to people’s lives.”

Dr. Markus Kuster, group leader of European XFEL GmbH’s detector development, said, “The European XFEL will represent a major step forward in equipping Europe with a new generation of research infrastructure that can meet the requirements of the 21st century. STFC’s unique skills are creating an imaging device which will help this remarkable facility realize its vast potential.”

Related Links:
Science and Technology Facilities Council
European XFEL
University of Glasgow

Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test
New
Laboratory Electric Thermostat
DNP-9025A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.