We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Peptides That Mimic a T-Cell Receptor May Prevent Toxic Shock Syndrome

By LabMedica International staff writers
Posted on 28 Sep 2011
Print article
Blocking the binding of bacterial superantigens to specific T-cell surface receptors may be a way to prevent potentially fatal toxic shock syndrome.

Superantigens (SAgs) are a class of antigens, which cause nonspecific activation of T-cells resulting in polyclonal T cell activation and massive cytokine release. SAgs can be produced by pathogenic microbes (including viruses, mycoplasma, and bacteria) as a defense mechanism against the immune system. Compared to a normal antigen-induced T-cell response where 0.001% to 0.0001% of the body’s T-cells are activated, these SAgs are capable of activating up to 20% of the body’s T-cells. The large number of activated T-cells secretes massive amounts of cytokines (the most important of which is TNF-alpha (tumor necrotic factor-alpha)). TNF-alpha is particularly important as a part of the body's inflammatory response and in normal circumstances (where it is released locally in low levels) helps the immune system defeat pathogens. However, when it is systemically released in the blood and in high levels, it can cause severe and life-threatening symptoms, including shock and multiple organ failure.

Investigators at the Hebrew University of Jerusalem (Israel) have been studying how superantigen toxins engage the immune system. Their work was based on the understanding that in order to act, a superantigen must first bind to the CD28 protein receptor on the surface of the human immune cell. CD28 (Cluster of Differentiation 28) is one of the molecules expressed on T cells that provide co-stimulatory signals, which are required for T cell activation.

The investigators reported in the September 13, 2011, online edition of the journal PLoS Biology that to elicit inflammatory cytokine gene expression and toxicity, superantigens must bind directly into the dimer interface of CD28. Preventing access of the superantigen to CD28 was sufficient to block its lethality. Mice were protected from lethal superantigen challenge by short peptides that mimicked the structure of the CD28 dimer interface and by peptides selected to compete with the superantigen for its binding site in CD28.

These findings provide a novel therapeutic approach against toxic shock. Since the blocking peptides mimic a human cellular structure, resistance cannot arise in the infecting bacteria or in the toxins because the peptides mimic a human immune receptor that is constant and will not change.

Related Links:

Hebrew University of Jerusalem

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test
New
Automated Cell Counter
QuadCount

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.