Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Uncontrolled Cholesterol Synthesis Stimulates Growth of Glioblastoma

By LabMedica International staff writers
Posted on 11 Oct 2011
Studies on the physiology of glioblastoma cells have found that active tumors are able to circumvent the normal molecular mechanisms that control cholesterol synthesis in order to provide large quantities of this critical cell membrane component for the rapidly reproducing cancer cells.

Glioblastoma (GBM) is the most common malignant primary brain tumor of adults and one of the most lethal of all cancers. More...
Epidermal growth factor receptor (EGFR) mutations (EGFRvIII) and overactive phosphoinositide 3-kinase (PI3K) are common in GBM. These mutations cause regulatory errors that promote tumor growth and survival, including sterol regulatory element-binding protein 1 (SREBP-1)–dependent lipid synthesis. EGFRvIII is a recognized oncogene in glioblastoma, which stimulates LDL receptor (LDLR) activity and promotes synthesis of large amounts of cholesterol.

Investigators at the University of California, Los Angeles (USA) worked with GBM cell lines, xenograft models, and GBM clinical samples, including those from patients treated with the EGFR tyrosine kinase inhibitor lapatinib. They reported in the September 15, 2011, online edition of the journal Cancer Discovery that GBM cells have devised a mechanism to subvert the normal pathways for feedback inhibition of cholesterol homeostasis via EGFRvIII and PI3K-dependent activation of SREBP-1.

Treating GBM xenograph animals with the liver X receptor (LXR) agonist drug GW3965, which targets liver LDLR, caused LDLR degradation, and it increased expression of the ABCA1 cholesterol efflux transporter, with the effect of potently promoting tumor cell death. These results show that EGFRvIII promoted GBM tumor survival through PI3K/SREBP-1–dependent upregulation of LDLR and suggest a role for LXR agonists in the treatment of GBM patients.

“Our data demonstrate that glioblastoma cells need large amounts of cholesterol to grow and to survive. This is not surprising considering the critical role of cholesterol in making new membranes, of which rapidly growing tumors need a lot,” said senior author Dr. Paul Mischel, professor of molecular and medical pharmacology at the University of California, Los Angeles. “New treatments are needed. This study uncovers a novel and potentially therapeutically targetable tumor cell growth and survival pathway, which could potentially lead to more effective treatments for patients in the clinic. Pharmacologic strategies that pump cholesterol out of a cell could lead to significant tumor cell death.”

Related Links:

University of California, Los Angeles




Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.