We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Radical Nitrogen Species Shield Tumors from Immune System Attack

By LabMedica International staff writers
Posted on 13 Oct 2011
Print article
Cancer researchers have found a molecular mechanism that protects tumors by preventing cytotoxic T lymphocytes (CTLs) from reaching the core of the tumor.

Investigators at Venetian Oncological Institute (Padua, Italy) and colleagues from several other Italian research institutions were investigating how tumors protect themselves from immune system attack. In particular, they focused on the role of the reactive nitrogen species (RNS) produced inside the tumor.

RNS are produced in animals starting with the reaction of nitric oxide with superoxide to form peroxynitrite. Superoxide anion is a reactive oxygen species that reacts quickly with nitric oxide (NO) in the vasculature. The reaction produces peroxynitrite and depletes the bioactivity of NO. This is important because NO is a key mediator in many important vascular functions including regulation of smooth muscle tone and blood pressure, platelet activation, and vascular cell signaling.

Peroxynitrite itself is a highly reactive species, which can directly react with various biological targets and components of the cell including lipids, thiols, amino acid residues, DNA bases, and low-molecular weight antioxidants. However, these reactions happen at a relatively slow rate. This slow reaction rate allows it to react more selectively throughout the cell. Peroxynitrite is able to get across cell membranes to some extent through anion channels. Additionally peroxynitrite can react with other molecules to form additional types of RNS including nitrogen dioxide and dinitrogen trioxide as well as other types of chemically reactive free radicals.

The investigators described in the September 19, 2011, online edition of the Journal of Experimental Medicine a novel RNS-dependent posttranslational modification of cytokines that had a profound impact on T-cell recruitment to mouse and human tumors. The modification came about from the reaction between RNS and the cytokine CCL2 (chemokine (C-C motif) ligand 2). CCL2 is a small cytokine belonging to the CC chemokine family that is also known as monocyte chemotactic protein-1 (MCP-1) and small inducible cytokine A2. CCL2 recruits monocytes, memory T cells, and dendritic cells to sites of tissue injury, infection, and inflammation.

Nitration of CCL2 by RNS at the tumor core destroyed its ability to attract T-cells, which resulted in CTLs being trapped in the stroma that surrounds cancer cells where active CCL2 persists.

The study concludes with the finding that preconditioning of the tumor microenvironment with novel drugs that inhibited CCL2 modification facilitated CTL invasion of the tumor, suggesting that these drugs may be effective in cancer immunotherapy.

Related Links:
Venetian Oncological Institute


New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Urine Drug Test
Instant-view Methadone Urine Drug Test
New
Urine Collection Container
Urine Monovette

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The artificial intelligence models can personalize immune therapies in oncology patients (Photo courtesy of 123RF)

AI Tool Identifies Novel Genetic Signatures to Personalize Cancer Therapies

Lung cancer and bladder cancer are among the most commonly diagnosed cancers globally. Researchers have now developed artificial intelligence (AI) models designed to personalize immune therapies for oncology... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.