Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Exercise Triggers Stem Cells in Skeletal Muscle

By LabMedica International staff writers
Posted on 12 Mar 2012
Mesenchymal stem cells (MSCs) in skeletal muscle have now been shown to be very responsive to mechanical strain from exercise. More...
The findings could lead to new therapeutic techniques using these cells to rehabilitate injured muscle and prevent or restore muscle loss.

Skeletal muscle MSCs have been known to be important for muscle repair in response to nonphysiological injury, mainly from studies of response to chemical injections that significantly damage muscle tissue and induce inflammation.

“Since exercise can induce some injury as part of the remodeling process following mechanical strain, we wondered if MSC accumulation was a natural response to exercise and whether these cells contributed to the beneficial regeneration and growth process that occurs post-exercise,” said Marni Boppart, PhD, professor at The Department of Kinesiology and Community Health of the University of Illinois at Urbana-Champaign (UIUC; IL, USA), and affiliated with the Beckman Institute for Advanced Science and Technology at UIUC.

In the study published on January 11, 2012, in the online journal PLoS One, researchers witnessed MSC accumulation in muscle of mice after vigorous exercise. They then determined that although MSCs do not directly contribute to building new muscle fibers, they release growth factors that spur other cells in muscle to fuse and generate new muscle, revealing a major aspect underlying the cellular basis for enhanced muscle health following exercise.

A key element of the method was in exercising the mice before isolating the cells to trigger secretion of beneficial growth factors. Then they dyed the cells with a fluorescent marker and injected them into other mice to see how MSCs coordinated with other muscle-building cells.

In addition to examining the cells in vivo, the researchers studied their response to strain on different substrates and found them to be very sensitive to the mechanical environment. For example, in vitro, multiaxial strain upregulated MSC markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise.

“These findings are important because we’ve identified an adult stem cell in muscle that may provide the basis for muscle health with exercise and enhanced muscle healing with rehabilitation/movement therapy,” senior author Boppart said.

Next, the group hopes to determine whether these cells contribute to the decline in muscle mass over a person’s lifetime. Preliminary data suggest MSCs become deficient in muscle with age. The team hopes to develop a combinatorial therapy that utilizes molecular and stem-cell-based strategies to prevent age-related muscle loss and to preserve significant muscle mass in disability-related atrophy.

Related Links:
University of Illinois at Urbana-Champaign
Beckman Institute for Advanced Science and Technology
The Department of Kinesiology and Community Health



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.