We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Safe, Low Doses of Highly Toxic Anticancer Drugs Effectively Block Tumor Growth

By LabMedica International staff writers
Posted on 12 Apr 2012
Print article
Low doses of two highly toxic anticancer drugs have been shown to effectively inhibit tumor development by removing methyl groups from DNA and thereby activating genes that prevent cancerous growth.

The two drugs are azacitidine and the closely related decitabine. These drugs hypomethylate DNA by inhibiting the enzyme DNA methyltransferase. In the presence of azacitidine methyltransferases incorporate the drug into DNA during replication and into RNA during transcription in the cell. Azacitidine acts as a false substrate and potent inhibitor of methyltransferases leading to reduction of DNA methylation - affecting the way cell regulation proteins are able to bind to the DNA/RNA substrate. Inhibition of DNA methylation occurs through the formation of stable complexes between the molecule and DNA methyltransferases, thereby saturating cell methylation machinery. Decitabine functions in a similar manner to azacitidine, although decitabine can only be incorporated into DNA strands while azacitidine can be incorporated into both DNA and RNA chains.

Investigators at Johns Hopkins University (Baltimore, MD, USA) worked with six leukemia cell lines, seven leukemia patient samples, three breast cancer cell lines, seven breast tumor samples (including four samples of tumors that had spread to the lung), one lung cancer cell line, and one colon cancer cell line. They treated cultures of these cell lines with low-doses of the drugs for three days and then allowed the drug-treated cells to rest for a week. Treated cells and tumor samples were injected into mice, and tumor development was observed for up to 20 weeks.

Results published in the March 16, 2012, issue of Cancer Cell revealed that transient exposure of cultured and primary leukemic and epithelial tumor cells to clinically relevant nanomolar doses of the drugs did not cause immediate cytotoxicity. Nonetheless, this treatment produced an antitumor memory response, including inhibition of subpopulations of cancer stem-like cells. These effects are accompanied by sustained decreases in genomewide promoter DNA methylation, gene reexpression, and antitumor changes in key cellular regulatory pathways. While effects varied among individual tumor cell lines, in general cancer cells reverted to a more normal state and eventually died.

“Low doses of azacitidine and decitabine may reactivate genes that stop cancer growth without causing immediate cell killing or DNA damage,” said contributing author Dr. Stephen Baylin, professor of oncology at Johns Hopkins University. “Our findings match evidence from recent clinical trials suggesting that the drugs shrink tumors more slowly over time as they repair altered mechanisms in cells and genes return to normal function, and the cells may eventually die.”

Related Links:
Johns Hopkins University



Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
Incubator
HettCube 120
New
Thyroid ELISA Kit
AESKULISA a-TPO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.