We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mechanical Tissue Resuscitation Technology Shows Promise Preventing Cell Death Following Brain Injury

By LabMedica International staff writers
Posted on 24 Apr 2012
Print article
Scientists looking for an effective treatment for traumatic brain injury have found that the size and extent of damaged tissue can be reduced by using a new device to prevent cell death.

The research, the focus of a three-year, USD 1.5 million study funded by the US Department of Defense (Arlington, VA, USA), was published April 2012 in the journal Neurosurgery. The technology evaluated in lab rats, is called mechanical tissue resuscitation (MTR) and uses negative pressure to create an environment that fosters cell survival.

Louis C. Argenta, MD, and Michael Morykwas, PhD, professors from Wake Forest Baptist Medical Center (Winston-Salem, NC, USA) department of plastic surgery and reconstructive surgery, and a multidisciplinary group of colleagues at Wake Forest Baptist, have more than 15 years of experience working with negative pressure devices to successfully treat wounds and burns. In this study, the team used MTR to remove fluid and other toxins that cause cell death from an injury site deep in the brain.

When the brain is injured by blunt force, explosion, or other trauma, the cells at the impact site are irreversibly damaged and they die. In the region surrounding the wound, injured cells release toxic compounds that cause the brain to swell and restrict blood flow and oxygen levels. This process results in more extensive cell death, which affects brain function. Dr. Argenta and his colleagues targeted these injured brain cells to determine if removing the fluid and toxic substances that lead to cell death could help improve survival of the damaged cells.

In the study, a bioengineered material matrix was positioned directly on the injured area in the brain and attached to a flexible tube connected to a microcomputer vacuum pump. The pump delivered a carefully controlled vacuum to the injured brain for 72 hours drawing fluid from the injury site.

The brain injuries treated with the device showed a considerable drop in brain swelling and release of toxic substances when compared to untreated injuries. Brains treated with the device revealed that over 50% more brain tissue could be preserved compared to nontreated animals. Behavioral function tests demonstrated that function was returned more rapidly in the MTR treated group.

“We have been very gratified by the results thus far. This study demonstrates that by working together a multidisciplinary group of researchers can develop new technology that could be used one day at the hospital bedside,” said Dr. Argenta.

The researchers are now assessing the same technology in stroke and brain hemorrhage models. “The Department of Defense has identified this as an area that is ripe for medical advancement,” said study coauthor Stephen B. Tatter, MD, PhD, professor of neurosurgery at Wake Forest Baptist Medical Center. “We believe it will soon be ready for a clinical trial.”

Related Links:

Wake Forest Baptist Medical Center


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Leishmania Test
Leishmania Real Time PCR Kit
New
Laboratory Electric Thermostat
DNP-9025A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.