We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Synthetic Molecules Created to Store, Replicate Genetic Information

By LabMedica International staff writers
Posted on 10 May 2012
Print article
British researchers have created the first synthetic molecules that, combined with the natural molecules DNA and RNA, are capable of storing and replicating genetic data.

A group of researchers, led by Dr. Philipp Holliger, from the Medical Research Council (MRC) Laboratory of Molecular Biology’s (LMB; Cambridge, UK) protein and nucleic acid chemistry (PNAC) division, have created the first synthetic molecules that, alongside the natural molecules DNA and RNA, are capable of storing and replicating genetic information.

Dr. Vitor Pinheiro and colleagues from Dr. Philipp’s group used advanced protein engineering technology to modify enzymes, which in nature synthesize and replicate DNA, to establish six new genetic systems based on synthetic nucleic acids. These have the same bases as DNA but the ribose linkage between them is replaced by quite different structures.

In accomplishing this, the scientists demonstrated that there is no functional constraint limiting genetic information storage to RNA and DNA. Therefore, this finding has implications for the fundamental comprehension of life on Earth. As other informational molecules can be vigorously synthesized and replicated, the emergence of life on Earth is likely to reflect the abundance of RNA (and DNA) predecessors of Earth in its earliest stages.

One of the practical applications of the techniques developed by the investigators is likely to be the development of functional nucleic acids, called aptamers, with therapeutic, diagnostic, and analytic applications. Aptamers can have a number of significant advantages over the current small molecule and antibody-based therapies. For instance, they bind their target molecule with high specificity (like antibodies) but being smaller they are expected to have better tissue penetration. They have low-toxicity and low-immunogenicity and they can be chemically modified to improve their stability and pharmacokinetic characteristically.

In the past, making aptamers ‘body proof’ considerably contributed to production costs. The new HNA (hexitol nucleic acid) genetic system, developed by the LMB researchers, addresses that matter by efficiently producing molecules that are from the outset less susceptible to enzymatic degradation and better suited for therapeutic use. The development of new aptamers could be useful in the diagnosis and treatment of cancers, hematologic, ocular, and inflammatory conditions, and other diseases.

The research team included collaborators from Catholic University (KU) Leuven (Belgium), the Center for Evolutionary Medicine and Informatics at Arizona State University (Tempe, AZ, USA) and the Nucleic Acid Center at the University of Southern Denmark.

Related Links:

Medical Research Council Laboratory of Molecular Biology
KU Leuven
Center for Evolutionary Medicine and Informatics at Arizona State University



New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Quantitative Immunoassay Analyzer
AS050
New
Leishmania Test
Leishmania Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.