We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Algorithm Detects and Records In Vivo Neural Activity

By LabMedica International staff writers
Posted on 29 May 2012
Print article
A new study shows that a robotic arm guided by a cell-detecting computer algorithm can identify and record readings from neurons in the living brain with better accuracy and speed than a human.

Researchers at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) and the Georgia Institute of Technology (Georgia Tech, Atlanta, USA) developed a way to automate the process of finding and recording information from neurons in the living brain. The automated process eliminates the need for months of training, providing long-sought information about living cells' activities. Using this technique, scientists could classify the thousands of different types of cells in the brain, map how they connect to each other, and discern how diseased cells differ from normal cells.

The new technique is a modern version of whole-cell patch clamping, which involves bringing a minuscule hollow glass pipette in contact with the cell membrane of a neuron, and then creating a small pore in the membrane to record the electrical activity within the cell; this skill usually takes several months to learn manually. To overcome this steep learning curve, the researchers built a robotic arm that lowered a glass pipette into the brain of an anesthetized mouse with micrometer accuracy. As it moves, the pipette monitors electrical impedance. If there are no cells around, electricity flows and impedance is low; when the tip hits a cell, electricity cannot flow as well, and impedance goes up.

The pipette takes two-micrometer steps, measuring impedance 10 times per second; once it detects a cell, it applies suction to form a seal with the cell's membrane, which also prevents the pipette from breaching through the membrane. The electrode can then break through the membrane to record the cell's internal electrical activity. The robotic system can detect cells with 90% accuracy, and establish a connection with the detected cells about 40% of the time. The method can also be used to determine the shape of the cell by injecting a dye, and in addition, the researchers are working on extracting a cell's contents to read its genetic profile.

“Our team has been interdisciplinary from the beginning, and this has enabled us to bring the principles of precision machine design to bear upon the study of the living brain,” said study co-author Craig Forest, PhD, an assistant professor of mechanical engineering at Georgia Tech. “If you really want to know what a neuron is, you can look at the shape, and you can look at how it fires. Then, if you pull out the genetic information, you can really know what's going on. Now you know everything. That's the whole picture.”

Related Links:

Massachusetts Institute of Technology
Georgia Institute of Technology


Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Urine Bone Markers Control
Lyphochek Urine Bone Markers Control
New
Food Allergens Assay Kit
Allerquant 14G A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: SCOPE IO has shown promise in predicting immunotherapy response in rare cancer patients (Photo courtesy of Lunit)

AI-Powered Whole-Slide Image Analyzer Predicts Immunotherapy Response for Rare Cancer Patients

Immunotherapy, especially immune checkpoint inhibitors like pembrolizumab, has become a groundbreaking treatment for cancer patients. However, not all patients respond the same way to this therapy, and... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.