We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Discovery Provides Insight into Fundamental Mystery of Fetal-Maternal Immune Tolerance

By LabMedica International staff writers
Posted on 21 Jun 2012
Print article
Scientists for the first time have discovered key steps in the molecular mechanisms involved in preventing the immune system of pregnant mammals from rejecting fetal tissue as foreign. The findings may also provide leads to better understanding and treatment of medical conditions arising from abnormalities in this and similar immune system pathways.

Although the foreign antigens of the developing fetus and of the placenta come into direct contact with cells of the maternal immune system, they fail to evoke the typical rejection response seen with organ transplant tissue and pathogens. Previous findings by researchers at New York University School of Medicine (New York City, NY, USA) prompted them to ask if there was some sort of barrier preventing activated T cells from reaching the fetus. They turned their attention to studying properties of the decidua and there, in a mouse model, they found new answers. The research team has now discovered that the onset of pregnancy causes the genes responsible for recruiting immune cells to sites of inflammation to be turned off within the decidua. As a result, T cells are not able to accumulate inside the decidua and therefore do not attack the fetus and placenta. Specifically, the implantation of an embryo changes the packaging of certain chemokine genes in the nuclei of the developing decidua's stromal cells. The change in the DNA packaging permanently silences (deactivates) the chemokine genes. Consequently, the chemokines are not expressed and T cells are not recruited to the site of embryo implantation.

Also of note, the observed change in the DNA packaging occurred by epigenetic modification, a modification that changes gene expression but not due to a hereditable gene mutation. So the findings also reveal “epigenetic modification of chemokine genes within tissue stromal cells as a modality for limiting the trafficking of activated T cells," said lead investigator Adrian Erlebacher, MD, PhD, associate professor of pathology at NYU School of Medicine and member of the NYU Cancer Institute at NYU Langone Medical Center. "It turns out that the cells that typically secrete the chemoattractants to bring the T cells to sites of inflammation are inhibited from doing so in the context of the pregnant uterus. The decidua appears instead as a zone of relative immunological inactivity," he explained.

Prof. Erlebacher and his team will next investigate whether these modifications are also present within the human decidua and whether the failure to generate them appropriately is associated with complications of human pregnancy. In addition to pregnancy, the study’s findings could also have medical implications for organ transplantation, autoimmune diseases, and even cancer since they also raise the possibility that the same kind of mechanism could enhance a tumor's ability to survive inside its host.

Related Links:
New York University School of Medicine

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Laboratory Electric Thermostat
DNP-9025A
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.