We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Damaged Heart Tissue Repaired by Genetically Engineered Stem Cells from Aged Heart Attack Patients

By LabMedica International staff writers
Posted on 09 Aug 2012
Print article
Heart disease researchers have used human cardiac progenitor cells (hCPCs) taken from elderly heart attack patients to demonstrate how genetic engineering could rejuvenate these stem cells for use to repair damage to the heart muscle.

Investigators at San Diego State University (CA, USA) isolated hCPCs from the myocardium of heart failure patients undergoing left ventricular assist device implantation. Cultures of the hCPCs were then genetically engineered to express either green fluorescent protein (hCPCe) or Pim-1-GFP (hCPCeP). Green fluorescence-labeled cells and hCPCeP cells labeled with luciferase were tracked by noninvasive techniques after the cells had been injected into the myocardia of immunocompromised mice following infarction. Myocardial structure and function were monitored by echocardiographic and hemodynamic assessment of the mice for 20 weeks after delivery.

Pim-1 (proto-oncogene serine/threonine-protein kinase) is mainly involved in cell cycle progression, apoptosis, and transcriptional activation as well as more general signal transduction pathways. The gene for Pim-1 is expressed primarily in B-lymphoid and myeloid cell lines, and is overexpressed in hematopoietic malignancies and in prostate cancer. Its role in signal transduction contributes to both cell proliferation and survival, and thus provides a selective advantage in tumorigenesis. Pim-1 has also been found to be highly expressed in cell cultures isolated from human tumors.

Results published in the July 26, 2012, online edition of the Journal of the American College of Cardiology revealed that hCPCs isolated from failing myocardium and modified with Pim-1 possessed enhanced reparative potential relative to control hCPCs. Improvements mediated by hCPCs modified with Pim-1 were evident structurally and functionally, with durable human cellular persistence, engraftment, and acquisition of phenotypic characteristics consistent with differentiated myocardium. Enhanced persistence of hCPCeP versus hCPCe was revealed by bioluminescence imaging at up to eight weeks after delivery.

"Since patients with heart failure are normally elderly, their cardiac stem cells are not very healthy," said first author Dr. Sadia Mohsin, a post-doctoral researcher at San Diego State University. "We modified these biopsied stem cells and made them healthier. It is like turning back the clock so these cells can thrive again. Modifying aged human cardiac cells from elderly patients adds to the cell's ability to regenerate damaged heart muscle, making stem cell engineering a viable option. This is an especially exciting finding for heart failure patients. Right now we can only offer medication, heart transplantation, or stem cell therapies with modest regenerative potential, but PIM-1 modification offers a significant advance for clinical treatment."

Related Links:
San Diego State University



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Thyroid ELISA Kit
AESKULISA a-TPO
New
Urine Bone Markers Control
Lyphochek Urine Bone Markers Control

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.