We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cell Culture Technique Leads to Tailor-Made Cancer Treatments

By LabMedica International staff writers
Posted on 04 Jan 2015
Print article
Image: Scanning electron microscope (SEM) photograph of fibroblasts in gel cultured on microfluidic chip (Photo courtesy of the University of Michigan).
Image: Scanning electron microscope (SEM) photograph of fibroblasts in gel cultured on microfluidic chip (Photo courtesy of the University of Michigan).
A novel in situ capture and culture methodology has been developed for ex vivo expansion of circulating tumor cells (CTCs) using a three dimensional co-culture model, simulating a tumor microenvironment to support tumor development.

The potential utility of CTCs to guide clinical care in oncology patients has gained momentum with emerging micro- and nano-technologies and tumor progression and metastasis depends both on enumeration and on obtaining sufficient numbers of CTCs for downstream assays.

Scientists at the University of Michigan (Ann Arbor, MI, USA) developed the capture and culture process with a microfluidic chip device that captures cancer cells as a blood sample is pumped across it. The team used a chip made of polydimethylsiloxane on a 1-inch by 3-inch glass slide. They covered the chip with microscopic posts that slow and trap cells, then coated it with antibodies that bind to the cancer cells.

Blood drawn from early lung cancer patients was flowed through the CTC-capture device at a flow rate of 1 mL/hour for 1 mL total for each device. After the cancer cells were captured on the chip, the team pumped in a growth medium mixture. They also added cancer-associated fibroblast cells. This created a three-dimensional environment that closely mimics the conditions inside the body of a cancer patient. After capture, cells also were fixed and immunofluorescently stained with labelled antibodies. The devices were scanned using a programmed inverted fluorescence microscope (Nikon, Melville, NY, USA). Positive and negative cells were designated as CTCs depending on the staining and enumerated.

The investigators used many other techniques including 3-D spheroid assays, invasion assays, sequencing, and real time polymerase chain reaction, (RT-PCR) which were analyzed on the ABI 7900HT instrument (Applied Biosystems; Foster City, CA; USA). After the cancer cells were captured on the chip, the team pumped in a mixture of collagen and Matrigel growth medium. The captured cancer cells prospered in the mixture, reproducing additional cells in 73% of tested samples. It was a dramatic improvement over earlier methods, which studied later-stage cancer patients and saw success rates of only around 20%.

Max S. Wicha, MD, distinguished professor of oncology, and coauthor of the study said, “The technology can be applied to most cancers, including breast, lung, pancreatic and others. It could enable doctors to follow the progression of each patient's disease much more closely. Cancer cells change constantly and they can quickly develop resistance to a given treatment. A device like this will enable us to follow the cancer's progression in real time. If a cancer develops resistance to one therapy, we'll be able to quickly change to a different treatment.” The study was published on December 1, 2014, in the journal Oncotarget.

Related Links:

University of Michigan  
Nikon
Applied Biosystems


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.