We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bioelectronic Device Detects Marker Linked to Neurodegenerative Diseases and Cancer

By LabMedica International staff writers
Posted on 31 May 2016
Print article
Image: A new electronic biosensor successfully detects the enzyme glutathione S-transferase (GST), linked to Parkinson\'s, Alzheimer\'s, and breast cancer, among other diseases (Photo courtesy of Brazilian National Nanotechnology Laboratory).
Image: A new electronic biosensor successfully detects the enzyme glutathione S-transferase (GST), linked to Parkinson\'s, Alzheimer\'s, and breast cancer, among other diseases (Photo courtesy of Brazilian National Nanotechnology Laboratory).
Researchers have developed a inexpensive transistor sensor for detection of biomolecules and other substances. Their first biosensor successfully detects the enzyme glutathione S-transferase (GST), linked to Parkinson's, Alzheimer's and breast cancer, among other diseases. The team is also developing an innovative paper-based electronic sensor to lower the cost even further.

The biosensor, developed by researchers at Brazil’s National Nanotechnology Laboratory (LNNano; Campinas, São Paulo State, Brazil), is basically a single-layer organic nanometer-scale transistor on a glass slide. It contains the reduced form of the peptide glutathione (GSH), which reacts upon contact with disease marker GST. The GSH-GST reaction is detected by the transistor, which can be used for diagnostic purposes.

The device was developed as part of a project that focuses on development of point-of-care (POC) devices by researchers in a range of knowledge areas, using functional materials to produce simple sensors and microfluidic systems for rapid diagnosis.

"Platforms like this one can be deployed to diagnose complex diseases quickly, safely, and relatively cheaply, using nanometer-scale systems to identify molecules of interest in the material analyzed," explained Carlos Cesar Bof Bufon, head of LNNano's Functional Devices & Systems Lab (DSF) and member of the project, whose principal investigator is Lauro Kubota, professor, Chemistry Institute (IQ-UNICAMP), University of Campinas.

In addition to portability and low cost, the advantages of the nanometric biosensor include its detection sensitivity. "This is the first time organic transistor technology has been used in detecting the pair GSH-GST, which is important in diagnosing degenerative diseases, for example," explained Prof. Bufon, "The device can detect such molecules even when they're present at very low levels in the examined material, thanks to its nanometric sensitivity."

The system can be adapted to detect other substances, such as molecules linked to other diseases, and elements present in contaminated material, among other applications. This requires replacing the molecules in the sensor with others that react with the analytes targeted by the test.

The team is working on paper-based biosensors to further lower cost, improve portability, and facilitate fabrication as well as disposal. The challenge is that paper is an insulator in its usual form. Prof. Bufon has developed a technique to make paper conductive and capable of transporting sensing data by impregnating cellulose fibers with polymers that have conductive properties. The technique is based on in situ synthesis of conductive polymers. For the polymers not to remain trapped on the surface of the paper, they have to be synthesized inside and between the pores of the cellulose fibers.

This is achieved by gas-phase chemical polymerization: a liquid oxidant is infiltrated into the paper, which is then exposed to monomers in the gas phase. The monomers evaporate under the paper and penetrate the pores of the fibers at the submicrometer scale. Inside the pores, they blend with the oxidant and begin the polymerization process right there, impregnating the entire material. The polymerized paper acquires the conductive properties of the polymers. This conductivity can be adjusted by manipulating the element embedded in the cellulose fibers, depending on the application for which the paper is designed.

Thus, the device can be electrically conductive, allowing current to flow without significant losses, or semiconductive, interacting with specific molecules and functioning as a physical, chemical, or electrochemical sensor.

The study, by de Oliveira RF, was published in the April 2016 issue of the journal Organic Electronics.

Related Links:
Brazil National Nanotechnology Laboratory

Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.